Theoretical and practical foundations of the use of parallel computing in solving problems of numerical methods in the educational process


Views: 183 / PDF downloads: 388

Authors

  • N. Karelhan
  • P.S. Gapbarova Евразийский Национальный Университет имени Л.Н. Гумилева
  • O.A. Alshinbaev

Keywords:

параллельные вычисления, численные методы, высокопроизводительные вычисления, параллельные вычисления численных методов, информационные технологии (ИТ), информационно-коммуникационные технологии( ИКТ), информатика, суперкомпьютер, parallel computing, numerical methods, high-performance computing, parallel computing of numerical methods, information technology (IT), information and communication technology (ICT), computer science, supercomputer, параллель есептеулер, сандық әдістер, жоғары өнімді есептеулер, сандық әдістерді параллель есептеу, ақпараттық технологиялар (АТ), ақпараттық-коммуникациялық технологиялар (АКТ), информатика, суперкомпьютер

Abstract

Currently, the development of high-performance parallel computing is one of the modern
requirements. There are many unsolved problems in the world. Many of these tasks require highperformance calculations. Therefore, in the field of education, there is a need to use parallel computing in
solving problems of numerical methods. This requires professionals who can use parallel computing. This
article makes a theoretical analysis of the learning conditions using parallel computing in solving problems
of numerical methods in universities around the world and the Republic. The necessity of using parallel
calculations in solving problems of numerical methods in higher educational institutions of the Republic
of Kazakhstan is substantiated.

References

Әдебиеттер

Қазақстан Республикасы нормативтік құқықтық актілерінің ақпараттық-құқықтық жүйесі, https://adilet.zan.kz/ 01.12.2022

Карелхан Н.– Параллель есептеулер кластері. Оқу құралы / Нұр-Сұлтан, 2022. – 134 б

Зенков. - М. Численные методы : учеб. пособие для СПО / А. В. : Издательство Юрайт, 2017. - 122 с. - Серия : Профессиональное образование.

А.С. Шевченко. Численные методы : учебное пособие / - Барнаул: Изд-во Алт. ун-та, 2016. -388с.

Clay. Mathematics Institute Dedicated to increasing and disseminating mathematical knowledge, http://www.claymath.org/ 01.12.2022

Aktulga, H.M., Fogarty, J.C., Pandit, S.A., Grama, A.Y. Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques (2012) Parallel Computing, 38 (4-5), pp. 245-259.

Pekurovsky, D. P3DFFT: A framework for parallel computations of fourier transforms in three dimensions (2012) SIAM Journal on Scientific Computing, 34 (4), pp. C192-C209.

Yokota, R., Barba, L.A., Knepley, M.G. PetRBF - A parallel O(N) algorithm for radial basis function interpolation with Gaussians (2010) Computer Methods in Applied Mechanics and Engineering, 199 (25-28), pp. 1793-1804.

Mehne, H.H., Mirjalili, S. A parallel numerical method for solving optimal control problems based on whale optimization algorithm (2018) Knowledge-Based Systems, 151, pp. 114-123.

Schaich, D., Degrand, T. Parallel software for lattice N = 4 supersymmetric Yang-Mills theory (2015) Computer Physics Communications, 190, pp. 200-212.

Gao, X., Owen, L.D., Guzik, S.M.J. A parallel adaptive numerical method with generalized curvilinear coordinate transformation for compressible Navier–Stokes equations (2016) International Journal for Numerical Methods in Fluids, 82 (10), pp. 664-688.

Dimitri Bertsekas, John N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods 1st Edition. -717 р.

Dimitri Bertsekas, John N. Tsitsiklis. Partial Solutions Manual Parallel and Distributed Computation: Numerical Methods. -94р.

Iosif Meyerov, Sergey Bastrakov, Konstantin Barkalov, Alexander Sysoyev, Victor Gergel. Parallel Numerical Methods Course for Future Scientists and Engineers. Russian Supercomputing Days 2017 839-850 рр.

Старченко А.В., Берцун В.Н. Методы параллельных вычислений: Учебник. – Томск: Изд-во Том. ун-та, 2013. – 223 с.

Атанбаев С. Сандық өдістердің алгорихмдері: Жоғары оқу орындары студенттеріне арналған оқу құралы. - Алматы: Университет "Қайнар", 1998. 148 б.

M.А. Султанов, Б.Л.Тиышбаев «Сандық әдістер» пәнін оқытуда электрондық оқыту құралдарын пайдалану ерекшеліктері», М.Әуезов атындағы ОҚМУ ғылыми еңбектері, 89-95б

Ә.Ү.Нұрымбетов, Е. М. Құсмұхамбетов. ПГУ им. С. Торайгырова. Сандық әдістер және программалау: оқу құралы.- Алматы: ЭвероЭверо, 2009.-100 б.

Акжалова А.Ж. Параллельные вычисления (учебное пособие). – Алматы, 2004 - 114с.

Е. Е. Дүйсембиев . Параллель есептеулер. Оқулық. – Алматы, 2011 ж. -230 б.

Серік М., Бакиев М.Н., Зулпыхар Ж.Е., Шындалиев Н.Т. «Matlab-та параллельді есептеу», Оқу құралы. – Астана, 2013. – 92 с.

References

Qazaqstan Respýblıkasy normatıvtik quqyqtyq aktileriniń aqparattyq - quqyqtyq júıesi, https://adilet.zan.kz/ 01.12.2022

Karelhan N.– Paralel esepteýler klasteri. Oqý quraly / Nur-Sultan, 2022. – 134 b

Zenkov. - M. Sandyq ádister: oqý. SPO / a. v. úshin nusqaýlyq: Iýraıt baspasy, 2017 j. - 122 b. - Serıa : kásiptik bilim.

A. S. Shevchenko. Sandyq ádister: oqý quraly / - Barnaýl: Alt baspasy. ýn-ta, 2016. -388b.

Clay. Mathematics Institute Dedicated to increasing and disseminating mathematical knowledge, http://www.claymath.org/ 01.12.2022

Aktulga, H.M., Fogarty, J.C., Pandit, S.A., Grama, A.Y. Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques (2012) Parallel Computing, 38 (4-5), b. 245-259.

Pekurovsky, D. P3DFFT: A framework for parallel computations of fourier transforms in three dimensions (2012) SIAM Journal on Scientific Computing, 34 (4), b. C192-C209.

Yokota, R., Barba, L.A., Knepley, M.G. PetRBF - A parallel O(N) algorithm for radial basis function interpolation with Gaussians (2010) Computer Methods in Applied Mechanics and Engineering, 199 (25-28), b. 1793-1804.

Mehne, H.H., Mirjalili, S. A parallel numerical method for solving optimal control problems based on whale optimization algorithm (2018) Knowledge-Based Systems, 151, b. 114-123.

Schaich, D., Degrand, T. Parallel software for lattice N = 4 supersymmetric Yang-Mills theory (2015) Computer Physics Communications, 190, pp. 200-212.

Gao, X., Owen, L.D., Guzik, S.M.J. A parallel adaptive numerical method with generalized curvilinear coordinate transformation for compressible Navier–Stokes equations (2016) International Journal for Numerical Methods in Fluids, 82 (10), pp. 664-688.

Dimitri Bertsekas, John N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods 1st Edition. -717 b.

Dimitri Bertsekas, John N. Tsitsiklis. Partial Solutions Manual Parallel and Distributed Computation: Numerical Methods. -94b.

Iosif Meyerov, Sergey Bastrakov, Konstantin Barkalov, Alexander Sysoyev, Victor Gergel. Parallel Numerical Methods Course for Future Scientists and Engineers. Russian Supercomputing Days 2017 839-850 b.

Starchenko a. v., Bersýn v. n. paraleldi esepteý ádisteri: oqýlyq. - Tomsk:Tom baspasy. ýn-ta, 2013. – 223 b.

Atanbaev S. Sandyq ódisterdiń algorıhmderi: Joǵary oqý oryndary stýdentterine arnalǵan oqý quraly. - Almaty: Ýnıversıtet "Qaınar", 1998. 148 b.

M.A. Sýltanov , B.L.Tıyshbaev "Sandyq ádister" pánin oqytýda elektrondyq oqytý quraldaryn paıdalaný erekshelikteri", M.Áýezov atyndaǵy OQMÝ ǵylymı eńbekteri, 89-95b

Á.Ú.Nurymbetov, E. M. Qusmuhambetov. PGÝ ım. S. Toraıgyrova. Sandyq ádister jáne programmalaý: oqý quraly.- Almaty: Everoevero, 2009.-100 b.

Aqjalova A.J. paraleldi esepteý (Oqý quraly). - Almaty, 2004-114b.

E. E. Dúısembıev . Paralel esepteýler. Oqýlyq. – Almaty, 2011 j. -230 b.

Serik M., Bakıev M.N., Zýlpyhar J.E., Shyndalıev N.T. "Matlab-ta paraleldi esepteý", Oqý quraly. – Astana, 2013. – 92 b.

Published

15.06.2023

How to Cite

Karelhan Н., Gapbarova П., & Alshinbaev . О. (2023). Theoretical and practical foundations of the use of parallel computing in solving problems of numerical methods in the educational process. Bulletin of L.N. Gumilyov Eurasian National University. Pedagogy. Psychology. Sociology Series., 143(2), 158–168. Retrieved from https://bulpedps.enu.kz/index.php/main/article/view/299

Issue

Section

Pedagogy